1,679 research outputs found

    ACCESS TIME OF EMERGENCY VEHICLES UNDER THE CONDITION OF STREET BLOCKAGES AFTER A LARGE EARTHQUAKE

    Get PDF
    The previous studies have been carried out on accessibility in daily life. However it is an important issue to improve the accessibility of emergency vehicles after a large earthquake. In this paper, we analyzed the accessibility of firefighters by using a microscopic simulation model immediately after a large earthquake. More specifically, we constructed the simulation model, which describes the property damage, such as collapsed buildings, street blockages, outbreaks of fires, and fire spreading, and the movement of firefighters from fire stations to the locations of fires in a large-scale earthquake. Using this model, we analyzed the influence of the street-blockage on the access time of firefighters. In case streets are blocked according to property damage simulation, the result showed the average access time is more than 10 minutes in the outskirts of the 23 wards of Tokyo, and there are some firefighters arrive over 20 minutes at most. Additionally, we focused on the alternative routes and proposed that volunteers collect information on street blockages to improve the accessibility of firefighters. Finally we demonstrated that access time of firefighters can be reduced to the same level as the case no streets were blocked if 0.3% of residents collected information in 10 minutes

    The dependency pair framework: Combining techniques for automated termination proofs

    Get PDF
    Abstract. The dependency pair approach is one of the most powerful techniques for automated termination proofs of term rewrite systems. Up to now, it was regarded as one of several possible methods to prove termination. In this paper, we show that dependency pairs can instead be used as a general concept to integrate arbitrary techniques for termination analysis. In this way, the benefits of different techniques can be combined and their modularity and power are increased significantly. We refer to this new concept as the “dependency pair framework ” to distinguish it from the old “dependency pair approach”. Moreover, this framework facilitates the development of new methods for termination analysis. To demonstrate this, we present several new techniques within the dependency pair framework which simplify termination problems considerably. We implemented the dependency pair framework in our termination prover AProVE and evaluated it on large collections of examples.

    Confluence Competition 2015

    Get PDF

    Stochastic modeling of cargo transport by teams of molecular motors

    Full text link
    Many different types of cellular cargos are transported bidirectionally along microtubules by teams of molecular motors. The motion of this cargo-motors system has been experimentally characterized in vivo as processive with rather persistent directionality. Different theoretical approaches have been suggested in order to explore the origin of this kind of motion. An effective theoretical approach, introduced by M\"uller et al., describes the cargo dynamics as a tug-of-war between different kinds of motors. An alternative approach has been suggested recently by Kunwar et al., who considered the coupling between motor and cargo in more detail. Based on this framework we introduce a model considering single motor positions which we propagate in continuous time. Furthermore, we analyze the possible influence of the discrete time update schemes used in previous publications on the system's dynamic.Comment: Cenference proceedings - Traffic and Granular Flow 1

    Reducing relative termination to dependency pair problems

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21401-6_11Relative termination, a generalized notion of termination, has been used in a number of different contexts like proving the confluence of rewrite systems or analyzing the termination of narrowing. In this paper, we introduce a new technique to prove relative termination by reducing it to dependency pair problems. To the best of our knowledge, this is the first significant contribution to Problem #106 of the RTA List of Open Problems. The practical significance of our method is illustrated by means of an experimental evaluation.Germán Vidal is partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y Competitividad under grant TIN2013-44742-C4-R and by the Generalitat Valenciana under grant PROMETEOII201/013. Akihisa Yamadais supported by the Austrian Science Fund (FWF): Y757Iborra, J.; Nishida, N.; Vidal Oriola, GF.; Yamada, A. (2015). Reducing relative termination to dependency pair problems. En Automated Deduction - CADE-25. Springer. 163-178. https://doi.org/10.1007/978-3-319-21401-6_11S163178Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A \vee C-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008)Geser, A.: Relative termination. Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany (1990)Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006)Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 185–198. Springer, Heidelberg (2004)Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reasoning 47(4), 481–501 (2011)Hullot, J.M.: Canonical forms and unification. CADE-5. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 52–66. Springer, Heidelberg (2010)Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980, unpublished note)Klop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 232–247. Springer, Heidelberg (2005)Koprowski, A.: TPA: termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg (2009)Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, University of Texas (1975)Liu, J., Dershowitz, N., Jouannaud, J.-P.: Confluence by critical pair analysis. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 287–302. Springer, Heidelberg (2014)Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra variables. ENTCS 86(3), 52–69 (2003)Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer-Verlag, London (2002)Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset orderings. In: RTA 2012. LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Vidal, G.: Termination of narrowing in left-linear constructor systems. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 113–129. Springer, Heidelberg (2008)Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Heidelberg (2014)Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. (2014). doi: 10.1016/j.scico.2014.07.009Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta Informaticae 24(1/2), 89–105 (1995)Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003

    Critical Peaks Redefined - Φ⊔Ψ=⊤

    Get PDF
    6th International Workshop on Confluence6th International Workshop on ConfluenceLet a cluster be a term with a number of patterns occurring in it. We give two accounts of clusters, a geometric one as sets of (node and edge) positions, and an inductive one as pairs of terms with gaps (2nd order variables) and pattern-substitutions for the gaps. We show both notions of cluster and the corresponding refinement/coarsening orders on them, to be isomorphic. This equips clusters with a lattice structure which we lift to (parallel/multi) steps to yield an alternative account of the notion of critical peak
    corecore